
INTRODUCTION
European forests have a wide range of social-ecological functions, such as storing
carbon, preventing natural hazards, and providing food and shelters [1,2]. Monitoring the
status of forests not only deepens our understanding of climate change and ecosystems
but also helps guide the formulation of ecological protection policies. Remote sensing-
based analyses of forests are typically limited to forest cover, and most of our knowledge
of forests comes from forest inventories, where tree density, canopy cover, species,
height, carbon stock, and other indicators are recorded. The inventories are
conventionally established by manually collecting in-situ measurements, which can be
time-consuming, labor-intensive, and difficult to scale up [3,4,5]. Forest cover also
ignores trees outside forests, which can constitute a considerable woody resource
and provide a variety of ecosystem services.  

 

Recently, Brandt et al. [6] have shown that advances in computer vision and remarkably
high resolution (0.5 m) satellite imagery enable the mapping of individual trees and
shrubs in the Sahara Desert. While questions arise about whether similar approaches
can be applied to dense forest trees. For most European countries, high-resolution aerial
photos and LiDAR data are readily and publicly available and are often updated at an
annual frequency, yet the feasibility of individual tree counting, crown segmentation, and
height estimation in European forests has never been proven. 

 

Here we introduce a deep learning-based 3-task framework which solves the individual
tree counting, crown segmentation and height estimation problems from aerial photos
and demonstrate the scalability of the methods by applying it for Denmark. We
further demonstrate the robustness and transferability of the networks by adapting it to
Southern Finland. 

 

For more details regarding our global-scale individual tree mapping studies, visit
www.treesoutsideforests.com!

DATA
The whole dataset contains 4-band (red, green, blue, near-infrared) 0.2 m resolution
aerial photos in Denmark taken during the summer of 2018 and 0.4 m resolution canopy
height model derived from LiDAR data collected in 5 years.

 

Two datasets were constructed for model training. For the individual tree counting and
crown segmentation tasks, 19k trees in 84 sampling plots across Denmark were
manually delineated for supervision, see Figure 1. For the height estimation
task, 6.3k ha of aerial photos and corresponding canopy height data were collected and
further split into a training (5k ha) and a testing (1.3k ha) set. We selected only the
regions where LiDAR data was collected during the same period as the aerial
photos (approximately 1/5 of Denmark) to ensure high consistency of the dataset.  

 

Figure 1: Datasets including the aerial photos, canopy height model, tree delineations
as well as density maps. 

METHODS
The framework contains 2 models: model 1 solves the individual tree counting and crown
segmentation tasks jointly; model 2 solves the height estimation task independently. The
models share a similar deep learning architecture adapted from the well-known UNet [7],
see Figure 1. 

Tree counting is modeled as a density counting problem where each tree object is
modeled as a Gaussian kernel that sums to 1. Accordingly, the total tree count per
plot equals to the integration of the corresponding density map [8]. Model 1 takes as
input 4-band aerial photos, a computed NDVI band and canopy height maps, and
generates tree segmentation masks as well as density maps. We
use the Tversky loss [9] for the segmentation task, and a tree boundary mask [6] is
introduced to weigh the losses and helps improve the separation of the touching
crowns. We use mean squared error for the density counting branch.  

The height estimation model takes as input 4-band aerial photos and a computed
NDVI band, and generates pixel-wise canopy height maps. We construct the training
dataset by balancing different forest types (coniferous, broadleaved, and non-forest)
and varying height ranges to ensure equivalent focuses on different landscapes. We
use smooth L1 loss for model training.  

Transfer learning is used for adapting the model trained in Denmark to Southern
Finland. Specifically, we train the counting and crown segmentation model using images
and tree delineations in Denmark and then finetune the pretrained model with the
original Denmark data as well as some additional training data (3k tree delineations) in
Southern Finland.  

 

Figure 2: Overall framework containing 3 tasks: 1. segmentation, 2. density estimation
and 3. pixelwise height estimation. Task 1 and 2 are solved jointly with a multi-tasking
network (MT-aUNet). Task 3 is solved separately using a single task network (aUNet).
Per-tree height map can be obtained by combining results from task 1 and 3. 

RESULTS
We applied the proposed 3-task framework for Demark and noticed consistently
high performance in diverse regions, and a total of 3.2M individual trees were detected,
see Figure 3.  

Figure 3: Products of the proposed framework, with examples in 3 major forest types
(coniferous, broadleaved, and non-forest).  

 

We validated the individual tree counting and crown segmentation performance on 3k
manually delineated tree polygons that were never seen by the model
during training. The model achieved robust performance in counting trees in
different landscapes, reflected by fitting slopes close to 1. While a slight
underestimation was observed in the predicted canopy area, reflected by fitting
slopes from 1.1 to 1.4, see Figure 4. 

Figure 4: Validation of the counting and crown segmentation tasks using the testing data.

 

We validated the height estimation performance on the testing images (1.3k
ha), randomly sampled from the whole dataset. We noted visually high agreement
between the per-pixel height estimation and the reference LiDAR height. The individual
tree height estimation obtained by combing the per-pixel height estimation with the crown
segmentation results also strongly agrees with the references according to the heatmap,
see Figure 5.  

Figure 5: Validation of the per-pixel and per-tree height estimation using the testing
data.  

 

We validated the finetuned model in 3 sampling regions in Southern
Finland and observed high performance in both counting and individual crown
segmentation tasks, see Figure 6.  

Figure 6: individual tree counting and crown segmentation applied in Southern Finland. 

DISCUSSIONS
The proposed framework solves the individual tree counting, crown segmentation and
height estimation problems in a scalable and transferable way, which
could strongly support the traditional labor-intensive forest
management studies. Additionally, the high efficiency of such intelligent models enables
fast and precise country-wide tree inventory at an annual frequency. Yet a few
limitations exist for the proposed methods. Firstly, the performance of the tree
segmentation model is upper bounded by human vision, as the training is supervised by
manually created annotations that might contain bias or mistakes. Secondly, the model
tends to underestimate individual crown area since we aim at separating single trees.
Thirdly, the model tends to underestimate the height of tall trees due to insufficient
supervision of particularly tall trees. To summarize, our study verified the feasibility of
country-scale individual tree inventory and paved the way for potential ecological
analysis such as biomass estimation at individual tree level.  

ABSTRACT
Forests have a wide range of social-ecological functions, such as storing carbon, preventing natural hazards, and providing food
and shelters. Monitoring the status of forests not only deepens our understanding of climate change and ecosystems, but also
helps guiding the formulation of ecological protection policies. Remote sensing based analyses of forests are typically limited to
forest cover, and most of our knowledge of forests comes from forest inventories, where tree density, canopy cover, species,
height, carbon stock and other indicators are recorded. The inventories are conventionally established by manually collecting
in-situ measurements, which can be time-consuming, labor-intensive and difficult to scale up. Here we present an automatic and
scalable tree inventory pipeline based on publicly available aerial images from Denmark and deep neural networks, enabling
individual-tree-level canopy segmentation, counting, and height estimation within different kinds of forests. The canopy
segmentation and counting tasks are solved in a multitasking manner, where a convolutional neural network is trained to jointly
predict a segmentation mask and a density map which sums up to the total tree count for a given image. Another network
trained with LiDAR-derived height maps estimates per-pixel canopy height from aerial photos, which, when combined
subsequently with the canopy segmentation masks, allows for per-tree height mapping. The multitasking network achieves a
segmentation dice coefficient of 0.755 on the testing set with 3904 manually annotated trees and a predicted total count of 3869
(r2 = 0.84). Compared with independent LiDAR reference heights, the height estimation model achieves a per-pixel mean
absolute error (MAE) of 2.6 m on the testing set and a per-tree MAE of 3.0 m when assigning tree height with the maximum
height estimate within each predicted canopy. The models perform robustly over diverse landscapes including dense forests
(coniferous and broad-leaved), open fields, and urban areas. We further verify the scalability of the framework by detecting 312
million individual trees across Denmark.
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